In modern industrial production, mold is an important technology used in shaping products (including metal products and nonmetal products) for all of the industries. Meanwhile, it is the ‘magnifying glass of efficiency and profit’ to the raw material and equipment, because the value of the final product made in the mold is often tens of, even hundreds of times as valuable as that of the mold itself.
The mold industry is the basic industry of the national economy, and it is called ‘the mother of industry’. Every aspect of human life such as clothes, food, housing, and transportation is closely connected with the mold industry. Therefore, the level of injection mold technology has been a significant symbol to measure a country’s developing level of mechanical industry.
And mold can be divided into two kinds of them: mold for metal products and nonmetal products.
The metal products mold include cold-press mold, pressing mold, forging mold, press casting mold, precise casting mold, stamping tool, punch tool, and dust metallurgy mold, etc. These kinds of mold have extensive apply-cation in electrode-cranial products, automobiles, aviation instruments, and other metal products.
The nonmetal products include plastic injection mold, ceramic mold, rubber mold, glass mold, food mold, and ornament mold. These kinds of molds have extensive apply cation in our lives, at this page we are talking about injection mold. this is the most papular modern technology which used in our life everywhere.
An injection mold used to form a plastic product using the injection molding process. A standard injection mould is made of a stationary or injection side containing one or more cavities and a moving or ejection side.
The resin, or raw material for injection moulding, is usually in pellet form and is melted by heat and shearing forces shortly before being injected into the mould. The channels through which the plastic flows toward the chamber will also solidify, forming an attached frame. This frame is composed of the sprue, which is the main channel from the reservoir of molten resin, parallel with the direction of the nozzle, and runners, which are perpendicular to the direction of the nozzle and are used to convey molten resin to the gate(s), or point(s) of the gate and feeding the molten material into the mold cavity. The sprue and runner system can be cut off and recycled after molding. Some moulds are designed such that it is automatically stripped from the part through the action of the mould. For example, the submarine gate or banana gate, if using hot runner systems then there will be no runners.
The quality of the injection molded part depends on the quality of the mould, the care taken during the moulding process, and upon details of the design of the part itself. It is essential that the molten resin is at just the right pressure and temperature so that it flows easily to all parts of the mold. The parts of the injection mold must also come together extremely precisely, otherwise small leakages of molten plastic can form, a phenomenon known as flash. When filling a new or unfamiliar mould for the first time, where shot size for that particular mould is unknown, a technician should reduce the nozzle pressure so that the mold fills, but does not flash. Then, using that now-known shot volume, pressure can be raised without fear of damaging the mould. Sometimes factors such as venting, temperature, and resin moisture content, can affect the formation of flash as well.
Traditionally, molds have been very expensive to manufacture therefore they were usually only used in mass production where thousands of parts are being produced. Injection Molds are typically constructed from hardened steel or aluminum. The choice of material to build a mold is primarily one of economics. Steel molds generally cost more to construct, but their longer lifespan will offset the higher initial cost over a higher number of parts made in the mold before wearing out. Aluminum molds can cost substantially less, and when designed and machined with modern computerized equipment, can be economical for moulding hundreds or even tens of parts.
ejection system
An ejection system is needed to eject the molded part from the cavity at the end of the molding cycle. Ejector pins built into the moving half of the mold usually accomplish this function. The cavity is divided between the two mold halves in such a way that the natural shrinkage of the molding causes the part to stick to the moving half. When the mold opens, the ejector pins push the part out of the mold cavity.
cooling system
A cooling system is required for the mold. This consists of an external pump connected to passageways in the mold, through which water is circulated to remove heat from the hot plastic. Air must be evacuated from the mold cavity as the polymer rushes in. Much of the air passes through the small ejector pin clearances in the mold. In addition, narrow air vents are often machined into the parting surface; only about 0.03 mm (0.001 in.) deep and 12 to 25 mm (0.5 to 1.0 in.) wide, these channels permit air to escape to the outside but are too small for the viscous polymer melt to flow through.
All of the information we referred from Wikipedia, but we sort out together for easy to read, if you want to know more, please go to injection mold Wikipedia.
Send Your Inquiry Now